题目链接
http://codeforces.com/contest/985/problem/C
题目
You have m = n·k wooden staves. The i-th stave has length ai. You have to assemble n barrels consisting of k staves each, you can use any k staves to construct a barrel. Each stave must belong to exactly one barrel.
Let volume vj of barrel j be equal to the length of the minimal stave in it.
You want to assemble exactly n barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed l, i.e. |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.
Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
Input
The first line contains three space-separated integers n, k and l $(1 ≤ n, k ≤ 10^5, 1 ≤ n·k ≤ 10^5, 0 ≤ l ≤ 10^9)$.
The second line contains m = n·k space-separated integers $a_1, a_2, ..., a_m$ $(1 ≤ ai ≤ 10^9)$ — lengths of staves.
Output
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly n barrels satisfying the condition $|v_x - v_y| ≤ l$ for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.
题意
需要造n
个桶,每个桶需要k
个木板,任意两个桶之间容积(一个桶中最短的木板的高度)的差距不能超过l
,然后给你n * k
个木板,第$i$个木板的长度为$a_i$,问能否造出符合条件的n
个桶,如果能的话问这n
个桶的容积之和最大是多少,如果不能的话就输出0
。
思路
首先对所有木板sort
一下,由于短板效应,我们至少可以让前n
个木板恰好为n
个桶的容积,判断一下$a_n-a_1\leq l$是否成立,不成立的话一定是$0$,因为前n
个的木板的差距一定是最小的。
我们发现,如果我们让每连续的k
个木板形成一个桶的话,那么这些桶的容积将会是$a_1、a_{k+1}、a_{2k+1}、\dots$,中间一些较小的木板都会被更短但是又必须得取的木板给包含,这样一定是最优的。
首先我们找到一个最大的upper
,使得$a_{upper} - a_1 \leq l\ \ (upper \leq n · k)$成立,这样在$[1,upper]$的范围内以任意n
个木板的高度为桶的容积都是合法的。假设此时我们选了$x$个连续的k
来造桶,还需要再造$y$个桶才能造够n
个桶,则有:$$x·k+y\leq upper$$$$x + y = n$$
移项、代入、化简:$$x\leq \frac{upper - n}{k - 1}$$
也就是说:得到$x$后,$y$也就相应出来了,对于剩下的$upper - x·k$个木板,显然取后$y - 1$个和第$x·k+1$个木板作为剩下的$y$个桶的容积是最优的。
实现
#include <bits/stdc++.h>
typedef long long ll;
const int maxn = int(1e5) + 7;
ll n, k, l, m, a[maxn], ans, upper;
int main() {
scanf("%lld%lld%lld", &n, &k, &l);
m = n * k;
for (ll i = 1; i <= m; i++) scanf("%lld", a + i);
std::sort(a + 1, a + 1 + m);
if (a[n] - a[1] > l) return 0 * puts("0");
if (k == 1) for (ll i = 1; i <= n; i++) ans += a[i];
else {
while (a[upper] - a[1] <= l && upper <= m) upper++;
upper--;
ll x = (upper - n) / (k - 1);
for (ll i = 1, cur = 1; i <= x; i++, cur += k) ans += a[cur];
for (ll i = 1; i < n - x; i++) ans += a[upper--];
ans += a[x * k + 1];
}
printf("%lld\n", ans);
return 0;
}